équation de Pell-Fermat

par Emilie Beaudoin, Marine Bignon, Béryl Boissavy, Marine Chambard, Elodie Charpentier, Virginie Montero, Delphine Pissavin, Aurélie Silondie, élèves de Seconde du Lycée Pablo Picasso de Fontenay-sous-Bois (94) et Mohammed Talmoudi du Lycée Romain Rolland d'Ivry (94)

enseignantes : Claude Parreau, Christiane Guedj et Monique Corlay

chercheur: Olivier Piltant

lycées d'Ivry (94) & de Fontenay sous Bois (94) — *problème de Pell-Fermat*

Quels sont les nombres entiers qui ont un inverse également entier ? Ce problème très simple devient l'équation de Pell-Fermat quand on s'intéresse non plus aux nombres entiers mais à tous les nombres de la forme $a + b\sqrt{p}$ où a et b sont des entiers (positifs ou négatifs) et p est un nombre premier.

Bordeaux:

COMPTE RENDU sur l'exposé du problème de PELL-FERMAT

Combien y a-t-il de nombres dont l'inverse est entier ? Dans N, un seul :1 ; dans Z deux: -1 et 1. Et dans R ?

L'exposé fut très méthodique et organisé, et surtout compréhensible par tous.

De plus, coup de chapeau aux élèves qui, bien que nombreux, ont réussi à nous présenter leurs recherches le plus clairement possible et à répartir équitablement leur temps de parole. Le problème ressemble à celui-ci qui est très simple : quels sont les nombres entiers (positifs ou négatifs), qui ont un inverse également entier, c'est-à-dire quels sont les a dans Z tels qu'il existe b dans Z et ab = 1?

Soit p un nombre premier, considérons tous les nombres de la forme $a + b\sqrt{p}$ où a et b sont des entiers positifs ou négatifs.

Cherchons les nombres $a + b\sqrt{p}$ tels qu'il existe un nombre $c + d\sqrt{p}$ où $(a + b\sqrt{p})$ $(c + d\sqrt{p}) = 1$. Autrement dit, nous recherchons les nombres de la forme $a + b\sqrt{p}$ qui admettent un inverse $1/(a + b\sqrt{p})$ de la même forme.

Somme et produit des nombres de la forme $a + b\sqrt{p}$ où a et b sont des entiers relatifs.

$$(3+4\sqrt{2}) + (1+\sqrt{2}) = 4+5\sqrt{2}$$

Soit $a + b\sqrt{p}$ où a et b sont des entiers relatifs. Soit $c + d\sqrt{p}$ où c et d sont des entiers relatifs.

Calculons leur somme:

 $(a + b\sqrt{p}) + (c + d\sqrt{p}) = (a + c) + (b + d)\sqrt{p}$ où a + c et b + d sont des entiers relatifs.

$$(3 + 4\sqrt{2}) \times (1 + \sqrt{2}) = 11 + 7\sqrt{2}$$

 $(-3 + 4\sqrt{2}) \times (1 - \sqrt{2}) = -11 + 7\sqrt{2}$

Soit $a + b\sqrt{p}$ où a et b sont des entiers relatifs. Soit $c + d\sqrt{p}$ où c et d sont des entiers relatifs.

Calculons le produit :

 $(a+b\sqrt{p}) \times (c+d\sqrt{p}) = ac + ad\sqrt{p} + bc\sqrt{p} + bdp$ = $(ac + bdp) + (ad + bc)\sqrt{p}$ où ac + bdpet ad + bc sont des entiers relatifs.

Calcul de l'inverse de $a + b\sqrt{p}$ où a et b sont des entiers relatifs.

exemples

Le nombre $3+4\sqrt{2}$ admet pour inverse $1/(3+4\sqrt{2})$...

$$\frac{1}{3+4\sqrt{2}} = \frac{3-4\sqrt{2}}{\sqrt{3+4\sqrt{2}}\sqrt{3-4\sqrt{2}}}$$

$$\frac{1}{3+4\sqrt{2}} = \frac{3-4\sqrt{2}}{9-32}$$

$$\frac{1}{3+4\sqrt{2}} = \frac{3-4\sqrt{2}}{-23}$$

$$\frac{1}{3+4\sqrt{2}} = \frac{-3}{23} + \frac{4}{23}\sqrt{2}$$

Le nombre $3+4\sqrt{2}$ a pour inverse $(-3/23)+(4/23)\sqrt{2}$. Les nombres (-3/23) et (4/23) ne sont pas des entiers, le nombre $3+4\sqrt{2}$ ne convient pas

Autre exemple : le nombre $1+\sqrt{2}$ admet pour inverse $1/(1+\sqrt{2})$.

$$\frac{1}{1+\sqrt{2}} = \frac{1-\sqrt{2}}{1+\sqrt{2}\sqrt{1-\sqrt{2}}}$$

$$\frac{1}{1+\sqrt{2}} = \frac{1-\sqrt{2}}{1-2}$$

$$\frac{1}{1+\sqrt{2}} = \frac{1-\sqrt{2}}{-1}$$

$$\frac{1}{1+\sqrt{2}} = -1+\sqrt{2}$$

Le nombre $1+\sqrt{2}$ admet pour inverse $-1+\sqrt{2}$. Ce nombre $1+\sqrt{2}$ convient.

Cas général:

$$\frac{1}{a+b\sqrt{p}} = \frac{a-b\sqrt{p}}{(a+b\sqrt{p}) \times (a-b\sqrt{p})}$$
Comme $(a+b\sqrt{p}) \times (a-b\sqrt{p}) = a^2 - p b^2$

$$\frac{1}{a+b\sqrt{p}} = \frac{a-b\sqrt{p}}{a^2-p b^2}$$

$$\frac{1}{a+b\sqrt{p}} = \frac{a}{a^2-p b^2} + \left(\frac{-b}{a^2-p b^2}\right) \sqrt{p}$$

Nous cherchons a et b pour que les nombres

$$\frac{a}{a^2 - p b^2} \operatorname{et} \frac{-b}{a^2 - p b^2}$$

soient des entiers relatifs.

Théorème. Pour qu'un nombre $a + b\sqrt{p}$ où a et b sont des entiers relatifs admette un inverse de la même forme, il faut et il suffit que $a^2 - p$ $b^2 = 1$ ou $a^2 - p$ $b^2 = -1$.

Démonstration:

$$\frac{1}{a+b\sqrt{p}} = \frac{a}{a^2 - p \ b^2} + \left(\frac{-b}{a^2 - p \ b^2}\right) \sqrt{p}$$

Soit un nombre $a + b\sqrt{p}$ tel que $a^2 - p$ $b^2 = 1$, alors $\frac{1}{a + b\sqrt{p}} = a - b\sqrt{p}$.

Soit un nombre $a + b\sqrt{p}$ tel que $a^2 - pb^2 = -1$, alors $\frac{1}{a + b\sqrt{p}} = -a + b\sqrt{p}$.

Réciproquement :

Soit un nombre $a + b\sqrt{p}$ tel que $a^2 - p$ $b^2 = k$ où k est un entier relatif.

$$\frac{1}{a+b\sqrt{p}} = \frac{a}{k} + \frac{-b}{k} \sqrt{p}$$

a/k et -b/k sont des nombres entiers que l'on appelle n et m. (a = k n et b = k m.)

On remplace a par k n et b par k m dans l'égalité $a^2 - p$ $b^2 = k$:

$$a^{2} - p b^{2} = k$$

 $k^{2}n^{2} - p k^{2} m^{2} = k$
 $k^{2} (n^{2} - p l^{2}) = k$
 $k (n^{2} - p l^{2}) = 1$

Corollaire. Dès qu'on a une solution (différente de 1 et de -1), on en a trois autres :

$$a + b\sqrt{p}$$
puis $-a + b\sqrt{p}$
et $a - b\sqrt{p}$
et $-a - b\sqrt{p}$.

Recherche de nombres.

Dans le cas où p = 2, l'équation devient : $a^2 - 2b^2 = 1$. a donné, calculons b :

$$a^{2} = 2 b^{2} + 1$$

$$a^{2} - 1 = 2 b^{2}$$

$$\frac{1}{2} (a^{2} - 1) = b^{2}$$

Cherchons a^2 tel que $\frac{1}{2}(a^2-1)$ soit un carré d'entier.

Nous avons trouvé $a^2 = 9$ d'où $\frac{1}{2}(a^2 - 1) = 4$ c'est-à-dire $b^2 = 4$.

Ce qui donne les nombres $3+2\sqrt{2}$, $3-2\sqrt{2}$, $-3+2\sqrt{2}$, $-3-2\sqrt{2}$. De même $a^2=289$ d'où $b^2=144$, ce qui donne les nombres $17+12\sqrt{2}$, $17-12\sqrt{2}$, $-17+12\sqrt{2}$, $-17-12\sqrt{2}$.

Dans le cas où p = 2, l'équation peut aussi être : $a^2 - 2b^2 = -1$. a donné, calculons b :

$$a^{2} = 2 b^{2} - 1$$

$$a^{2} + 1 = 2 b^{2}$$

$$\frac{1}{2} (a^{2} + 1) = b^{2}$$

Cherchons a^2 tel que $\frac{1}{2}(a^2+1)$ soit un carré d'entier.

Nous avons trouvé $a^2 = 1$ d'où $\frac{1}{2}(a^2 + 1) = 1$ c'est-à-dire $b^2 = 1$.

Ce qui donne les nombres $1+\sqrt{2}$, $1-\sqrt{2}$, $-1+\sqrt{2}$, $1-\sqrt{2}$. De même $a^2=49$ d'où $b^2=25$, ce qui donne les nombres $7+5\sqrt{2}$, $7-5\sqrt{2}$, $-7+5\sqrt{2}$, $-7-5\sqrt{2}$.

Cette méthode ne nous permet pas de trouver beaucoup de solutions.

Puissance d'une solution.

THEOREME: Dans le cas où p = 2, les nombres $(1 + \sqrt{2})^n$, avec n entier relatif, sont des solutions.

$$(1 + \sqrt{2})(-1 + \sqrt{2}) = 1$$

$$\frac{1}{1 + \sqrt{2}} = -1 + \sqrt{2}$$

$$(1 + \sqrt{2})^2(-1 + \sqrt{2})^2 = 1$$

$$(3 + 2\sqrt{2})(3 - 2\sqrt{2}) = 1$$

$$\frac{1}{3 + 2\sqrt{2}} = 3 - 2\sqrt{2}$$

$$(1 + \sqrt{2})^n(-1 + \sqrt{2})^n = 1$$

$$\frac{1}{(1 + \sqrt{2})^n} = (-1 + \sqrt{2})^n$$

Exemple : A quelle puissance de $1+\sqrt{2}$ le nombre $19601+13860\sqrt{2}$ est-il égal ?

Le nombre $19601+13860\sqrt{2}$ est-il une puissance de $1+\sqrt{2}$? S'il existe un entier k tel que $A^k = 19601+13860\sqrt{2}$, comme $A^{k-1} = A^k / A = A^k \times (1/A)$:

$$A^{k-1} = (19601 + 13860\sqrt{2}) \times (-1 + \sqrt{2})$$

$$A^{k-1} = (2 \times 13860 - 19601) + (19601 - 13860)\sqrt{2}$$

$$A^{k-1} = 8119 + 5741\sqrt{2}$$

De même:

$$A^{k-2} = 3363 + 2378\sqrt{2}$$

$$A^{k-3} = 1393 + 985\sqrt{2}$$

$$A^{k-4} = 577 + 408\sqrt{2}$$

$$A^{k-5} = 239 + 169\sqrt{2}$$

$$A^{k-6} = 99 + 70\sqrt{2}$$

$$A^{k-7} = 41 + 29\sqrt{2}$$

$$A^{k-8} = 17 + 12\sqrt{2}$$

$$A^{k-9} = 7 + 5\sqrt{2}$$

$$A^{k-10} = 3 + 2\sqrt{2}$$

$$A^{k-11} = 1 + \sqrt{2}$$

Conclusion:

$$19601+13860\sqrt{2}=(1+\sqrt{2})^{12}$$
.

Quels sont les inversibles?

Soit A l'ensemble des nombres de la forme $a + b\sqrt{2}$ avec a et b entiers.

Soit *B* l'ensemble des éléments de *A*, inversibles dans *A*. Nous savons que, parmi les éléments de *B*, il y a : 1, -1, $1+\sqrt{2}$, $-1+\sqrt{2}$, $-1-\sqrt{2}$, $1-\sqrt{2}$ ainsi que toutes les puissances de ces nombres. Maintenant, il s'agit de voir si seules les puissances de $(1+\sqrt{2})$, $(1-\sqrt{2})$, $(-1+\sqrt{2})$ et de $(-1-\sqrt{2})$, 1 et -1, sont des éléments de *B*.

Plaçons nous ici dans T, le sous-ensemble de B où a > 0 et b > 0. Dans T, il y a les nombres de la forme $(1+\sqrt{2})^n$. (n entier strictement plus grand que 0). Supposons qu'il y ait dans T, au moins un nombre m, qui ne soit pas une puissance de $(1+\sqrt{2})$. Parmi ceux-là, je choisis le nombre m = x + y tel que x > 0, y > 0 et m le plus petit possible. Divisons ce nombre par $(1+\sqrt{2})$. Soit g, le résultat obtenu : g est forcément plus petit que m, car $(1+\sqrt{2}) > 1$, et g est positif car la division de deux positifs donne un positif. De plus, g est un élément de g car la division de deux inversibles donne un inversible.

$$\frac{x + y\sqrt{2}}{1 + \sqrt{2}} = (2y - x) + (x - y)\sqrt{2}$$

Je veux prouver que ce nombre g appartient à T, donc je vais prouver que x - y et 2y - x sont des nombres strictement positifs.

Prouvons d'abord que x - y est strictement positif.

Repartons de l'équation de Pell-Fermat :

$$x^2 - 2y^2 = \pm 1$$

Nous pouvons considérer que y > 2. En effet, nous sommes, d'une part, dans le cas où b > 0 et donc y > 0. De plus, y ne peut être égal à 1, sinon on aurait $x + y\sqrt{2} = 1 + \sqrt{2}$ alors que $x + y\sqrt{2}$ ne peut être égal à une puissance de $1 + \sqrt{2}$. $x^2 - 2y^2 = \pm 1$

$$x^{2} - 2y^{2} = \pm 1$$
$$x^{2} - y^{2} = \pm 1 + y^{2}$$

Or y > 2 et donc $y^2 \pm 1 > 0$. Il s'ensuit que $x^2 - y^2 > 0$; donc $x^2 > y^2$, soit x > y car x et y positifs. **Donc** x - y **est strictement positif.**

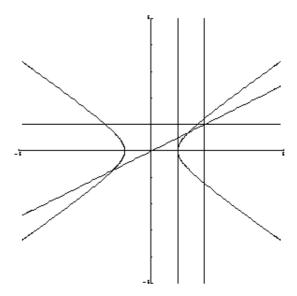
Prouvons ensuite que 2y - x est strictement positif.

On a 2 cas:

- soit y > x/2 et 2y x est strictement positif
- soit $y \le x/2$ et 2y x est strictement négatif. Or, dans ce cas-là, $x^2 2y^2 = 1$ car, $2y \le x$ et $4y^2 \le x^2$ et a fortiori $2y^2 \le x^2$ et $x^2 2y^2$ est strictement positif. En conclusion, dans ce cas, x et y doivent vérifier les conditions suivantes :

$$x > 0$$
;
 $0 < y$;
 $x^2 - 2y^2 = 1$;
 x et y entiers naturels.

Résolvons ce système graphiquement :



Il n'y a aucun point de coordonnées entières qui vérifie le système. **Donc** 2x - y **est strictement positif.**

Conclusion: Nous avons prouvé que le nombre g appartient à T. Comme il est plus petit que m; il est donc une puissance de $(1+\sqrt{2})$. Or m=g $(1+\sqrt{2})$. Donc m est lui aussi une puissance de $1+\sqrt{2}$. Nous avons démontré par la méthode de raisonnement par l'absurde que **les inversibles de** A **sont donc uniquement**: $1, -1, 1+\sqrt{2}, -1+\sqrt{2}, -1-\sqrt{2}, 1-\sqrt{2}$ **ainsi que toutes les puissances de ces nombres.**